Superfícies cúbicas
A superfície algébrica é uma das formas f ( x , y , z ) = 0 onde f ( x , y , z ) é um polinômio em x , y e z . A ordem da superfície é o grau do polinômio. A superfície da ordem um é um plano. A superfície de ordem dois é chamada de superfície quadrática e consiste em superfícies como elipsoides e hiperboloides. Estes incluem cones, cilindros e paraboloides. A superfície cuja história nos interessa neste pequeno artigo é uma superfície de ordem três que é chamada de superfície cúbica. Em 1849, Salmon e Cayley publicaram os resultados de sua correspondência sobre o número de linhas retas em uma superfície cúbica. Foi Cayley quem, em uma carta para Salmon, mostrou pela primeira vez que só poderia haver um número finito de linhas retas em uma superfície cúbica, enquanto que Salmon provou que havia exatamente 27 linhas retas em geral. No final de seu tratado de 1865, The Geometry of Three Dimensions, Salmon descreveu como os dois haviam colaborado para encontrar o teorema de Cayley - Sal